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1. Introduction

Provious teclmnior) reports have dealt wilh light scaktering by & single
spherical pariicle, or by a mono-disperse systen of such particles., ¥Vhen the
goattering by a hetero~disperse systeom of purticles is used to determine tha
particle size distribution, we are coucerncd with the deternination of an unknown
function, To determine such & function complstely, it 1s evidently necessary to
observe scme gquantity which depends on & paramster whioh can be wvaried continuously,.
Two suoh paramoters imediately suggest themselwns: the wave-length of the light
and the angle of observation, In this report only the first of these is considered,
and attention is focusssd on the question of what can bs determined as Yo particle
size distribution from turbidity msasurements whon the wawve-length is varied.

It is assumecd throughout %imt the scatitering particles aro all spherical in shape
and of tho sawio refractive index (independent of the vawe-len;th), and that the

conoentration iz sufficiently low for nultiple scatbering to be neglected.

2, The interral equation for the distributinn function and its_solutisn.

Tho scattoring cross-gection for & siiglo rolherical particle of radius X

-

wher illurinated by monochromatic light of wave dength N can be writtea in t}

form
N Clhax))
o= 77 Fhx), (1}
where X = Ev/k.

: ] " X
and £ is a funotion which has beon sxtensively tabulated.” It depends on the

J'Sea. for instance, Technicel Reports 1, 2, 3 of this series; Tsbles of
Scattering Functions lor Spherical Particles, National Ruweau of Stendards
(Wasliington, 1948); R. 0. Cunprecht and C. M. Sliepoevitch, Tables of lighi-
soattoring Functicnn for Spherical Particlss, (University of iicanigen, 1'.-)515,,
The function £ is identical with the functicn % of "af.l:}mical svort Ne, 1.
In terms of tre esettaring coefficient ¥, ${d)= &° gy
whore of = R .. i \) 2 KL:L})




rofractive 1 '~» m ag well sg on Y wa Il hrecwor, o't The depandence on me

iet the muber oF acettoring particlesz por urit wvoluse with =adii in the
range (37, - t- A ) be n{ L J L, emi 5% the turbldity at wave-lsngtic % be
denctad f:y ’?(), ~ Neglecting rmltiy & scastoring, we then have

FOO = (T3 )0 dox (2)

o

where

FR) = &5 sty ()

The problem is, tlien, to solwvs the integral equation (2) for the function ‘Y‘\.(x‘,).
the function F(fz\l and the kernsi :’{-(kx) being regarded as known.

If we suppose thai F(k) ies knowmn for all values of k from O to o0 (i.n.
’\‘(»13 known fox all wave-lencths from O to €O ), then (2) is cf & %ype for which
& rigorous soludti-.n L possible by rellin transfomﬂis.a Unlortunetely, howsver,
thie eolution is of little practical uss in tho prasent cass. PPor in practice

the turbidity. emd hience F(k), will only be Imowm foir quito a linited range of I,

e rer;o not sufficlent to determine the Msllir treasform of #(k.). Further, even

oo

£ ¥ h, ) wery wwwm for a suffioiently wide renge of k, it would then be
necodgary to tele eccount of the wvariaticn of reTractive index with wave~lsngth,
and %is would destroy the specinl ioru of the equation (2). A further cbjecticn
ig thet the Mellin wransfor:: g} tic: - -1ld regpdre {airly extensive numerical

conputation.

3
Various other metlsus of solwving (2) were =awrefore considorsd, In one of

these, it was asgunsd

'-', the dis ?-;.out;.vx VRS vw.rrmv, about gone moan rudius ¥,

2869, for instance. 1%,

Tntograls, (Oxnrd, 1 948}, .’6

M .‘itchxwrc‘n, Introduoction to “ke Theory of Fourier

0



say, and g Tayler .ardes Tor thy functio.. Jybx T bhoe asidphby

»olsod of .?.oc.o wne

uaed, the dsriveilwea of e fanction £ buing found mmwrically. The calcalation
of the higher dorivaitives proved unse*isfeciory, howevar-, owing to irregular
differancea in the tabulated functi.u,

Further, this method would be of nc use for & broad distribution, and wes
therefore abandoned.

Another method attempted wea to replace ths lutegral equation (2) by a set
of linear equations. ‘he requiesite matrix inversion was performed by the Vayne
Coemputation Center. This metiwd also proved unsatisfactory, éue to the fact that
some of the elements of the inverse matrix were very large compared with others,
so that, as the function F(k) in (2) is, in praoctioe, subject to sxperimental
errors, the recults defuced in this way would be unraliablec This behavior of
the inverse matrix is osvideatly cornmscted with the fuct thmt the funcbtion f is a
rapidly increzsing function of its argument {ses on).

The meothod finally adopted was the folloving. Although it has not yeot been
brought to a numorical conclusion, it is bellswmd that it should give roliable
resultr snhject Lo certain restrictiona ca the distribution funetion. In the
firat place, we shall suppose thet the particle radii lie within e certain‘“x:z.mge,
say

X, ~0xs & x +D ()
and that obserwationa of turbidity are mnde at wave-lengths also lying within

a certain range, eay

honhih $hook (s)

Ve rrust then wriwe (2} in tho form-. ..o oom o o

LS, Job A
F(k) = | ORI EES (6)
> & 3

X =
where kg — abho b Lon 4 nk.

o W D ()
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j‘.f-:— X-°+ ﬁls.al—‘ jﬁf 3 : (7)
g . . E =
h.‘; 1\?“%’&% f’f _
{8)
then (6) can be weittens -
L7y :"’ ; . Zi oo™
q-'\(,ig; *«-’J \*’(}ﬁ’»,’f.f j N(e-f’\s?l"& 3 (”‘"‘j f;s ?2; 5: f} > (9)
=} - 2
where Dk = Fh), (10)

\‘P(h‘g x.“) e (k) N (1)

N{(x)=al)Ax. (12)

We obLwerve thet TJ(:‘:I-' M:c iz Hhwo mgher of particles por unit velume with radii between

Kb Dx-x’ et v ¢ Bx{nsdat).
Let us now suppoes thmt the kernsl /) k! " ;;rj) is expanicd in a series of

legendre polyroriinlsy

kT I) B &Z A,d?a : " e\x) (13)
1 ...‘
multiplying (9) by Py { kl and mﬁegmting, with repest tu ,m from =4 %o 1, we cbtains
m e * é
2 € N: = 2250 | P () k! (34)
o ¢ 4 o B
4 1 =
" hﬂl‘ " - ‘ . V@ - ~ 1
where 3,\) = § N« {5{_;&;)&&{“ |
¢ ] ! as)

Bquations {14) now constitute ar irlinite set of Linomr equations for the detore

nimation of tha unknown conatar’ ;; M. Heving found these, _ﬂ('xl) iz girn by

L

M= S Ny B (). @8
P

A
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In practioo, of course, & fi-dtn csuhar ol Gerns in (18), (i<¢), (16) must be used.
Any systen of ortiwgonal functions could be used in plase of tho Legendre
polynomials, Thnse pcréicular fuanctions are suggested, hewewar, by tho fact that
ths funotion £ can bLe well spproximmted owver & fairly wide range of ite argunent
by & polynomial cf fairly low Jopree, say of degree p. Taking acoourt of (7),
{(8), (11), this moans that (f’(kl, xl) can be approxinated by o polynomial which

1, xl, and hence Ly using only Logendre

is of degroc p in each of the variables k
polynonials of daproe _{_ p in (13), TVith tlie approxination, (14) becones a set

of (p + 1) equaticns in (p + 1) unknwnims, For the rangec of partiocle size end
vave~length so far considered, p could bo quita a small mmber--say from 3 to 5,
Vhethor & rathor small number of terms in the asriac (16) ylelds a good approxi-
nation te the true distribuvion functicn deponds, ol course, on the nature of this
function and, apecifically, on whoilior it can be well approxim bted by a poirnomial
of low degree. The trend of the values of the coeflicientr Nj should givo a fairly
good indication a3 to the rapidity of convergence of the series (16).

Irrespoctive of the converpgeuse of (16), howesver, a inwowledge of a certain
number of tho coelficisnts Hj provides us with useful information about the dis-
tribution function, For, from (7), (12) and (15). we see that il tha first
(p + 1) coefficionts ’Ij arc lnowm, then the first (p + 1) monents of the dietribution

with respact t thoe origin, namely

o YatA X 3
L i KD ‘?’.d'd)( {,L‘:Q,:).:-J. F}) (17)
J PR PRFAND S .

ocan be found. Ths movmnd Mg gives the total rimber of particles, while !;%1/"0 givea
tho mean radius <f the particles. iighor nmovcencs furniah tho mesn square deviatioun,
mean cvbic deviation, and so on, &5 that considerable inforrietion es to the nature
of the Jdisgtribution can be obtuinex 1. Lils way.

If 4% 15 desireq only to caleluin tha ruerants Mj, vhen tha function £ is

spyroximated by a polynonisl, the abovwe vrocedure mey be ghortened oz follows: let



ua write, ss oo Lppredresiog

;H,ilkj w2 L [ 9

Then svbstituting Unis in {6; and proceeding as before, we obinin

&
:/t; X M, = ! ik ?L(_!’;,’):’.‘Lh/ . (18)

=0 s :

=
o
‘L

where

# &
£ ;
ot B Fae R o4
OGS G | rgr b YR (Rl (9)

Bquations (18) are a set of {y * 1) ogurtions to determine tho (p + 1) moments

£ 9 Mys oear !ﬂp. fhe coefficiznts C‘“'J" can bs calculeted once and for ell.
The integrals occurring in (i) {or (14} can bs celoulated by nunmcrical integraticn
fron thoe observed turbidit}'/ or -- parhnps rather nore ainply -« by approximating

the functicn ${%')by a polyncnial in k1l and then exprossing the various powers of

x* in terns of iecgendre polynonials. Sincefrom (19), aj4 = 0 if 1 3 j, the
equations (18; c¢rn be solved without difficulty. An expurinsntal check oan bhe
obtained from “he wvalue of the moment ii;. For the totel mass per unit volume of

the scatlering particles is %w plig, whoro § is the density of ithe perticle mterial,
and this quentity will be lumwwm or can be deterrnined.

In connection with this nethod, ww {ollowing point should be observed: the
function £ is & rapidly increasing functi-n of ite arguent over ths ugeful rangs,
especinlly for small waluor of e aijunant | J}-(J/‘,)ru ':.-.—ngt‘rj\" ‘f"‘"ﬁ AL Jo
vhich reans that the larger Lurililes concribute wmuch more to the scatisring than
the smaller onos, Consequently. uwinsg Lo the experimeutal errors in the datermination
of turbidity, it will not Ls poesiile e deleriine accurately tne distridbution
function for tho smallexr vnlues of x il the distribution is a broad one, The
170110008 1y sheuld, nevertlalesc, bu olvon with fei: aocursoye

finother roelated pnyvw is the following: altaovgh th: Junction £ nan be rell

approxinated .. s mizynonizl ef iow dagres over o uzefui rzuss of i3 argunsnt,



7o

such g represeatation pives o lar;e u:veoivupge srror (though a omall absolute
error) for small values of tho arpmeal {(assuning LAt small vaiues of the

argunont hove to e used, which is the oase if the lower limit of particle radii
ie snall). Thig vill not natter if the distributicn is a broad one. If, however,
the distribution is such that an appreciable Lraction of the rolevgnt values of
Ix are srall, the rosults obtained will be misleading. 7To take en extreme case, if
the approxination (i« x,)u const.s'\h x_)é' (Rayleigh scattering) is walid over the
whole i1-elevant range of valuse ol kx, then evidently all that can be debtermined
about the distribution is the value of the momont Mg.

It is hoped to ispue a furthor report shortly whero nunoriocal data will be
given which will onable the method to be carried tlhrough explicitly and without
too nuch labor. It 48 hoped also to present comparisons of particle size distribu-~
tions obtainod frow turbidity measurements with those obteined elestron-rmioroscopi=-

callyo

It chould pe posaible to dulsmnine tho first few monents of the particle
radius distribution from turbidiiy rwasurenents viith fair aceuracy, provided that
not too wide limits can be sst to “he purticls radil, and that not too large a
fraction of the particles have '*u.all't radii, Fron these moments the distribution
itself can boe caloulated il tho wsories of Legendro polynomials (1G) is suffiociently

rmpidly convergent,
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